

Department of Information Engineering and Computer Science

FOIL it! Find One mismatch between Image and Language caption

ACL, Vancouver, 31st July, 2017

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurelie Herbelot, Moin Nabi, Enver Sangineto, Raffaella Bernardi {firstname.lastname}@unitn.it <u>https://foilunitn.github.io</u>

Research Question

• Do Language and Vision models genuinely integrate both modalities, plus their interaction?

Research Question

- Do Language and Vision models genuinely integrate both modalities, plus their interaction?
 - Image Captioning

Research Question

- Do Language and Vision models genuinely integrate both modalities, plus their interaction?
 - Visual Question Answering

Question: How many people are riding a bicycle?Answer: three

Visual Question Answering

Research Question

• Do Language and Vision models genuinely integrate both modalities, plus their interaction?

Our contribution

• FOIL dataset and tasks as a (challenging) benchmark for SoA models

Take-home

• Current models fail in deeply integrating the two modalities

Related Work

- Binary Forced-Choice Tasks (Hodosh and Hockenmaier, 2016)
 - given two captions, original & distractor, an image captioning model has to pick one
 - \circ $\,$ model fails to pick the original caption $\,$
 - \circ limitations
 - hard to pinpoint the reason for the model failure: due to multiple word change simultaneously
 - easier problem: due to selection between two captions

Related Work

- CLEVR Dataset (Johnson et al., 2016)
 - \circ $\;$ artificial dataset to evaluate visual reasoning
 - \circ $\,$ analysed shortcoming of VQA models $\,$
 - \circ limitations
 - task specific model achieves super human performance (Santoro et al., 2017)
 - some questions are hard to answer by human's

Motivation

- Need of automatically generate resource with less effort
- Need tasks such that automatic and human evaluation have the same metric
- Need of diagnostics way to evaluate limitations of SoA models

FOIL Dataset

• For a given image and original captions, generate foil captions by replacing one NOUN in the original caption

A person on bike going through green light with red **bus** nearby in a sunny day.

Original Caption

Target Word : bus Foil Word : truck Target - Foil pair = bus - truck

A person on bike going through green light with red **truck** nearby in a sunny day.

Generated Foil Caption

FOIL Dataset

- For a given image and original captions, generate foil captions by replacing one NOUN in the original caption
- Original caption based on the MS-COCO (Lin et al., 2014) dataset for image and caption
- Target-Foil pair creation based on MS-COCO object super-category
 replace objects within same super-category with each other
 - e.g. cat-dog, car-truck etc

- Foil not present
 - perform replacement only if the 'foil' word is not present
- Salient Target
 - replace a 'target' word only if it is visually salient
- Mining hardest foil caption
 - by using 'neuraltalk' (Karpathy and Fei-Fei, 2015) loss

FOIL Dataset : Sample

• Sample Generated Example

- An orange cat hiding on the wheel of a red car.
- 2. A cat sitting on a wheel of a vehicle.

Original Caption

- An orange cat hiding on the wheel of a red boat.
- 2. A **dog** sitting on a wheel of a vehicle.

Generated Foil Captions

FOIL Dataset : Composition

• Composition of FOIL-COCO dataset

	# datapoints	# images	# captions	# target-foil pairs
Train	197,788	65,697	395,576	256
Test	99,480	32,150	198,960	216

FOIL Dataset : Proposed Tasks

- Task 1 : Binary classification : Original or Foil
- Task 2 : Foil word detection
- Task 3 : Foil word correction

task 1:

People riding bicycles down the road approaching a dog. FOIL

task 2: foil word detection

People riding bicycles down the road approaching a **dog**.

task 3: foil word correction

People riding bicycles down the road approaching a **bird**.

- Binary classification: Original or Foil
 - Given an image and a caption decide original or foil caption

People riding bicycles down the road approaching a bird.

Original Caption

People riding bicycles down the road approaching a dog.

Foil Caption

- Binary classification: Original or Foil
 - Given a image and a caption decide original or foil caption

People riding bicycles down the road approaching a bird.

Original Caption

Human performance (AMT)

- Majority (2/3) : 92.89
- Unanimity (3/3) : 76.32

People riding bicycles down the road approaching a dog.

Foil Caption

• Foil word detection

 $\circ~$ Given an image and a 'foil' caption identify the 'foil' word

People riding bicycles down the road approaching a dog.

People riding bicycles down the road approaching a dog.

• Foil word detection

 $\circ~$ Given an image and a 'foil' caption identify the 'foil' word

nT o .60 People riding bicycles down the road approaching a dog.

Where is the mistake in caption?

People riding bicycles down the road approaching a dog.

18

Human performance (AMT)

- Majority (2/3) : 97.00
- Unanimity (3/3) : 73.60

- Foil word correction
 - Given an image, a 'foil' caption and 'foil' word location, correct the 'foil' caption

People riding bicycles down the road approaching a dog.

People riding bicycles down the road approaching a bird.

19

FOIL Dataset : is NOT Equal to

• Visual Question Answering

• In VQA, answers are highly dependent on the (linguistic) context of the question.

≠ A person on motorcycle going through green light with red bus nearby in a sunny day.

What man is riding?

• In FOIL, we are asked a context independent fine-grained information about the image.

FOIL Dataset : is NOT Equal to

• Object Classification/Detection

• In computer vision tasks, generally question is, what objects are present in the image

 In FOIL, question is "what object is NOT in the image (foil classification/detection) and understand what object is there based on the context(correction)?"

- VQA Models
- Image Captioning Model

- Baseline Models
 - Language Only (Blind)
 - LSTM (Question) followed by MLP

- Baseline Models
 - Language Only (Blind)
 - CNN + LSTM (Zhou et al., 2015)
 - CNN (Image), LSTM (Question) joined by concatenation followed by MLP

Zhou et al. "Simple Baseline for Visual Question Answering." Arxiv, 2015

- VQA Models
 - LSTM + norm I (Antol et al., 2015)
 - CNN (Image), LSTM (Question) joined by pointwise multiplication followed by MLP

Antol et al. "VQA: Visual Question Answering." ICCV, 2015

- VQA Models
 - LSTM + norm I (Antol et al., 2015)
 - Hierarchical Co-attention (HieCoAttn) (Lu et al., 2016)
 - CNN (Image), LSTM (Question), both Image & Question is co-attended in alternatively

Lu et al. "Hierarchical Question-Image Co-Attention for Visual Question Answering." NIPS, 2016

- Image Captioning Model
 - Bi-directional IC Model (IC-Wang) (Wang et al., 2016)
 - Given Image, and past and future context model predicts current word

Wang et al. "Image captioning with deep bidirectional LSTMs." MM, 2016

Results

• Task 1 : Binary Classification

	Overall	Correct	Foil
Blind	55.62	86.20	25.04
CNN + LSTM	61.07	89.16	32.98
LSTM + norm I	63.26	92.02	34.51
HieCoAttn	64.14	91.89	36.38
IC-Wang	42.21	38.98	45.44
Human (Majority)	92.89	91.24	94.52
Human (Unanimity)	76.32	73.73	78.90

Results

• Task 2 : Foil word detection

	Only Nouns	All Words
Chance	23.25	15.87
LSTM + norm l	26.32	24.25
HieCoAttn	38.79	33.69
IC-Wang	27.59	23.32
Human (Majority)	_	97.00
Human (Unanimity)	_	73.60

Results

• Task 3 : Foil word correction

	All Target Words
Chance	1.38
LSTM + norm l	4.7
HieCoAttn	4.21
IC-Wang	22.16

Conclusion

- Created a challenging dataset and corresponding challenging tasks
 used to evaluate limitations of language and vision models
 - can be extended to other part of speech (see Shekhar et al., 2017), scene etc
 - by knowing source of error, will help in designing better models
- Need fine-grained joint understanding of language and vision

Thank You !!! Q & A

Dataset https://foilunitn.github.io

- **Read** and **understand** the caption and carefully **watch** the image
- **Determine** if the caption provides a correct description of what is depicted in the image
- If you judge the caption as "wrong", you will be asked to type the word that makes the caption incorrect

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

- orrect
- wrong

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

- correct
- wrong

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

orrect

wrong

Type the wrong word (one word) (required)

- Foil not present
- Salient Target

• Foil not present

- Perform replacement only if 'Foil' word is not present in the image
 - Check that 'Foil' word is not used by any other ms-coco annotator

For e.g.,

- I. "A **boy** is running on the beach"
- II. "A boy and a little girl are playing on the beach"
- Target Foil = Boy Girl

• Salient Target

- Replace 'Target' words only if it is visually salient in the image
 - Based on annotator agreement i.e. more than one annotator used 'Target' word

For e.g.,

- I. Two **zebras** standing in the grass near rocks.
- II. Two **zebras** grazing together near rocks in their enclosure.
- III. Two **Zebras** are standing near some rocks.
- IV. two zebras in a field near one another
- V. A grassy area shows artificially arranged rocks and two **zebras**, as well as part of the lower half of a **deer**.
- Target Foil = Zebra Dog (Used)
- Target Foil = Deer Dog (Not Used)

FOIL Dataset : Mining Hardest Foil Caption

- To eliminate visual-language bias For every original caption could produce one or more foil caption
- Neuraltalk loss is used to mine hardest foil caption Eliminates both visual and language bias